La obtención de imágenes en un TC se realiza a través de un tubo de Rx.
En los estudios radiográficos con la técnica convencional, la región del paciente de objeto de estudio que es tridimensional queda proyectada en la película como una imagen bidimensional. Por este motivo no tiene la nitidez deseable, ya que existe una superposición de las estructuras anatómicas de esta región.
Para eliminar este problema y conseguir una mayor calidad en la imagen se desarrollaron diversas técnicas tomografías.
En la tomografía lineal convencional, los Rx realizan un barrido de todo el grosor del cuerpo, consiguiéndose la imagen deseada por el movimiento conjunto del foco de Rx y de la placa, que borra y desdibuja los planos inferiores y superiores al plano deseado. La cantidad de radiación que recibe el paciente en este estudio es grande y la nitidez de la imagen se resiente por las imágenes de barrido.
La obtención de imágenes en el equipo de TC viene dada por un tubo emisor de un haz de Rx que está enfrentado con suma precisión a una columna de detectores.
Ambos, es decir el bloque tubo-detectores, se moverán sincrónicamente para ir girando siempre enfrentados y de esta forma se obtendrán las distintas proyecciones del objeto.
Cada detector tendrá un canal por el cual enviará las señales recibidas de cada uno de los detectores en cada proyección, y a partir de ellas reconstruye la imagen, pero siempre quedarán archivadas en la memoria del ordenador o en el disco magnético de donde podrán ser extraídas siempre que se desee.
Por tanto, los detectores convierten la señal de radiación en una señal electrónica de respuesta o “señal analógica” (sí o no, es decir, hay pulso o no hay pulso) que a su vez se convierte en “señal digital” por medio de una conversión analógico-digital (si hay señal se obtiene como resultado 1 y si no hay señal el resultado es 0).
Este proceso de conversión lo realiza el computador para poder así trabajar con las medidas recibidas en un sistema binario, que es el que utilizan los ordenadores.
La imagen reconstruida puede ser almacenada pudiendo visualizarla cada vez que se desee. También puede ser impresa en una placa convencional a través de una impresora láser conectada al monitor de visualización.
La forma exacta en la que se produce la imagen en TC es muy complicada y requiere conocimientos de física, ingeniería e informática. Los principios básicos, no obstante, pueden explicarse con facilidad si se elige el equipo más simple, compuesto por un haz de Rx finamente colimado y un único detector.
La fuente de Rx y el detector están conectados de forma que tiene un movimiento sincrónico. Cuando el conjunto fuente de Rx-detector realiza un barrido o TRASLACIÓN a través del paciente, las estructuras internas del sujeto atenúan el haz en función de la densidad y del número atómico de los tejidos de la zona.
La intensidad de radiación se detecta en función de este patrón y se crea un perfil de intensidades o PROYECCIÓN. Al final de un barrido, el conjunto fuente-detector gira y comienza un segundo barrido. Durante este barrido, la señal del detector vuelve a ser proporcional a la atenuación del haz provocada por las estructuras atómicas internas, y se obtiene una segunda proyección.
Si se repite muchas veces el proceso se obtendrán una gran cantidad de proyecciones. Esas proyecciones no se visualizan, sino que se almacenan de forma numérica en el ordenador.
El procesado de los datos que realiza el ordenador supone la superposición efectiva de cada proyección para RECONSTRUIR la estructura anatómica correspondiente a ese corte. La forma más sencilla de poder explicarlos principios físicos de la tomografía computarizada es que esta consiste en el uso de un haz de rayos X finamente colimado y un único detector. La fuente de rayos X y el detector están conectados de tal modo que se mueven de forma sincronizada. Cuando el conjunto fuente-detector efectúa un barrido, o traslación, del paciente, las estructuras internas del cuerpo atenúan el haz de rayos X según sus respectivos valores de número atómico y densidad de masa. La intensidad de radiación detectada variará, así, conformará un perfil de intensidad llamado proyección. Al concluir la traslación, el conjunto fuente-detector regresa a su posición de partida, y el conjunto completo gira para iniciar una segunda traslación. Durante ésta, la señal del detector vuelve a ser proporcional a la atenuación del haz de rayos X de las estructuras anatómicas, de lo que se obtiene un segundo resultado de exploración.
Si se repite este proceso un número elevado de veces, se generarán numerosas proyecciones. Estas proyecciones no se perciben visualmente, sino que se almacenan en un ordenador. Después, el ordenador las procesa y estudia sus patrones de superposición para reconstruir una imagen final de las estructuras anatómicas. La superposición de las proyecciones no se produce como podría imaginarse en primera instancia. La señal del detector durante cada traslación se registra en incrementos de un máximo de 1.000. El valor de cada incremento está relacionado con el coeficiente de atenuación de los rayos X que corresponde al trayecto total de la radiación por el tejido. Mediante el empleo de ecuaciones simultáneas se obtiene finalmente una matriz de valores representativa de la sección transversal de la estructura sometida a examen.
A entender con un poco más del teorema de Radón, La tomografía axial computarizada (TAC) es un sistema de imagen que reconstruye la estructura interna de una sección de un sistema heterogéneo y se utiliza ampliamente en la diagnosis médica.

httpshttps://es.scribd.com/doc/17184942/Principios-Fisicos-de-la-Tomografia-Computarizada://es.scribd.com/doc/17184942/Principios-Fisicos-de-la-Tomografia-Computarizada
No hay comentarios.:
Publicar un comentario